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Background. Cipargamin (KAE609) is a potent antimalarial in a phase II trial. Here we report efficacy, pharmacokinetics, and 
resistance marker analysis across a range of cipargamin doses. These were secondary endpoints from a study primarily conducted to 
assess the hepatic safety of cipargamin (hepatic safety data are reported elsewhere).

Methods. This phase II, multicenter, randomized, open-label, dose-escalation trial was conducted in sub-Saharan Africa in 
adults with uncomplicated Plasmodium falciparum malaria. Cipargamin monotherapy was given as single doses up to 150 mg or up 
to 50 mg once daily for 3 days, with artemether-lumefantrine as control. Key efficacy endpoints were parasite clearance time (PCT), 
and polymerase chain reaction (PCR)–corrected and uncorrected adequate clinical and parasitological response (ACPR) at 14 and 
28 days. Pharmacokinetics and molecular markers of drug resistance were also assessed.

Results. All single or multiple cipargamin doses ≥50 mg were associated with rapid parasite clearance, with median PCT of 
8 hours versus 24 hours for artemether-lumefantrine. PCR-corrected ACPR at 14 and 28 days was >75% and 65%, respectively, 
for each cipargamin dose. A treatment-emerging mutation in the Pfatp4 gene, G358S, was detected in 65% of treatment failures. 
Pharmacokinetic parameters were consistent with previous data, and approximately dose proportional.

Conclusions. Cipargamin, at single doses of 50 to 150 mg, was associated with very rapid parasite clearance, PCR-corrected 
ACPR at 28 days of >65% in adults with uncomplicated P.  falciparum malaria, and recrudescent parasites frequently harbored a 
treatment-emerging mutation. Cipargamin will be further developed with a suitable combination partner.

clinical Trials Registration. ClinicalTrials.gov (NCT03334747).
Keywords.  cipargamin; KAE609; falciparum malaria; sub-Saharan Africa; efficacy.

Cipargamin (KAE609/NITD609) is a novel spiroindolone anti-
malarial [1]. In a phase II trial in Thailand [2], cipargamin 
30  mg/day for 3  days had a median parasite clearance time 
(PCT) of 12 hours for both Plasmodium falciparum and 
Plasmodium vivax. This compares favorably with artemisinin-
based therapies such as artemether-lumefantrine (Coartem/
Riamet; Novartis; median PCT from 24 to 44 hours) [3]. Parasite 
clearance was not affected by kelch13 mutations associated with 

artemisinin resistance in P. falciparum [4]. Polymerase chain re-
action (PCR)–corrected cure rates between 14% and 60% at day 
28 were reported in a phase II trial in Vietnam for single doses 
between 10 mg and 30 mg with a trend for increased efficacy 
with increased doses [5]. The elimination half-life of approxi-
mately 23 hours supports once-daily dosing and there was no 
food effect observed [2, 6].

Cipargamin is active against all intraerythrocytic stages of 
P.  falciparum [7] and gametocytes [8]. Spiroindolones disrupt 
sodium homeostasis in Plasmodium by inhibiting the Na+ 
transporting plasma membrane ATPase Plasmodium falcip-
arum ATPase 4 (PfATP4) [1, 9]. Mutations in the PfATP4 gene 
have been generated in vitro under prolonged drug pressure, 
leading to decreased cipargamin susceptibility [7, 10, 11].

Transient liver function test elevations were observed in 
some trial participants [1, 12, 13], and the current trial was 
designed primarily to assess the hepatic safety of cipargamin 
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in an active-controlled setting by comparison to current 
standard of care (artemether-lumefantrine). Hepatic safety 
results will be described elsewhere. Here we describe the ef-
ficacy and pharmacokinetics of cipargamin, and analysis of 
cipargamin resistance markers, which were assessed as sec-
ondary objectives.

METHODS

Study Design and Setting

This was a multicenter, randomized, open-label, dose-
escalation phase II trial, conducted in Mali, Gabon, Ghana, 
Uganda, and Rwanda. The protocol and all amendments were 
reviewed by the Independent Ethics Committee or Institutional 
Review Board for each center. The trial was conducted ac-
cording to International Conference on Harmonisation (ICH) 
E6 Guidelines for Good Clinical Practice. The trial is registered 
with ClinicalTrials.gov (NCT03334747).

Participants

Eligible patients were adults (≥18 years old and ≥45 kg body 
weight) with microscopic confirmation of acute uncomplicated 
P. falciparum malaria (parasitemia of 500 to 50 000/μL with ax-
illary temperature ≥37.5ºC or oral/tympanic/rectal tempera-
ture ≥38.0ºC or history of fever during the previous 24 hours). 
Exclusion criteria included mixed Plasmodium infections 
and severe malaria according to World Health Organization 
(WHO) criteria [14]. Full exclusion criteria are provided in the 
Supplementary Appendix.

Randomization and Dose Escalation

Patients were treated in 5 cohorts, using ascending single 
or multiple doses of cipargamin (Figure 1). It was originally 
planned to enroll 4 cohorts, with maximum cipargamin dosages 
of a 75-mg single dose and 50 mg once daily for 3 days. Cohort 
5 (150-mg single cipargamin dose) and an optional sixth co-
hort in which patients would receive 110-mg or 225-mg single 
doses, depending on hepatic safety in cohort 5, were added in 
a protocol amendment made when the trial was ongoing. If no 
added benefit was expected from using the 225-mg dose, the 
trial could be stopped after cohort 5. Cipargamin doses in the 
first 2 cohorts were potentially subtherapeutic, so the minimum 
number (N = 10) of patients needed to assess the primary ob-
jective was included. Subsequent cohorts each aimed to recruit 
20 cipargamin patients. It was planned to treat 10 patients per 
cohort with artemether-lumefantrine (80/480  mg, twice daily 
for 3 days; Novartis Pharma AG) as an active comparator.

Recruitment to cohorts was sequential. After completion of 
each cohort, dose escalation of patients to the next cohort was 
determined by decision criteria (provided in Supplementary 
Table 1) based on postbaseline changes in Liver Function Test 
(LFTs) and approval by the safety review committee (SRC). The 

SRC (which included 1 external hepatologist) met formally after 
cohorts 1, 3, 4, and 5 had completed treatment.

Within each cohort, patients were randomized in parallel to 
treatment groups using Interactive Response Technology (IRT). 
After being contacted by the investigator, the IRT assigned a 
randomization number (using a validated system that auto-
mated the random assignment of patient numbers to randomi-
zation numbers) that linked the patient to a treatment arm and 
specified a unique medication number for the study drug to be 
dispensed to the patient. The randomization number was not 
communicated to the investigator. Randomization to a cohort 
could be suspended if patients experienced safety events.

Patients received close monitoring in an inpatient setting for 
at least the first 3 days, followed by frequent outpatient moni-
toring for a total of 4 weeks. Patients were required to yield 2 
consecutive negative blood smears for parasites and clearance of 
fever to be discharged. Cipargamin patients who met protocol-
specified treatment failure criteria received artemether-
lumefantrine as rescue medication.

Procedures

Blood samples were taken for parasite counts (Giemsa-stained 
thick and thin films) at baseline; at 2, 4, 8, 12, 24, 36, 48, 60, and 
72 hours; then at days 4, 7, 10, 14, 21, and 28 after starting treat-
ment, and at unscheduled visits. At least 200-thick film visual 
fields were examined. Parasite counts were made per 200 leuko-
cytes (or if the count was <100 parasites, counting was continued 
for up to 500 leukocytes). The sampling schedule and method 
for pharmacokinetic analysis are provided in Supplementary 
Appendix. Parent drug concentrations in plasma samples were 
determined using a validated high-performance liquid chro-
matography–tandem mass spectrometry with electrospray 
ionization, with a lower limit of quantification of 1 ng/mL for 
cipargamin [5, 6]. PCR genotyping to assess recrudescence 
versus reinfection and identify resistance markers [15, 16] 
was performed at baseline and at the time of treatment failure. 
Methods for Pfatp4 analysis are provided in the Supplementary 
Appendix.

Outcomes and Measurements

Planned efficacy outcomes were as follows: PCR-corrected 
and uncorrected adequate clinical and parasitological re-
sponse (ACPR) at 14 and 28 postdose; PCT; fever clearance 
time (FCT); proportions of patients with parasitemia at 12, 24, 
and 48 hours; parasite reduction ratio at 24 hours (PRR24); 
incidence of reinfection and recrudescence at 28  days; inci-
dence of early treatment failure (ETF; defined in this study 
[Supplementary Table 2] more strictly than in the WHO defi-
nition [17] as subtherapeutic doses of cipargamin were used in 
the first 2 cohorts); late clinical failure (LCF); and late parasito-
logical failure (LPF).
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Pharmacokinetic parameters calculated were maximum 
plasma concentration (Cmax); time to maximum plasma con-
centration (Tmax); areas under the concentration-time curve 
from time zero to the time of the last quantifiable concentration 
(AUClast), zero to infinity (AUCinf), and zero to 24 hours (AUC0-24h);  
and elimination half-life (T1/2).

Statistical Analysis

Analyses of efficacy variables were based on the full analysis set 
(all randomized patients who took at least 1 dose of study treat-
ment during the treatment period and whose baseline parasite 
count was greater than zero). Artemether-lumefantrine groups 

from all cohorts were pooled for analysis. The ACPR was calcu-
lated for each treatment by cohort, with 95% confidence inter-
vals (CIs) provided using the Clopper-Pearson method, as were 
rates of ETF, LCF and LPF, and proportions of patients with 
parasitemia by time point. For PCT and FCT, descriptive sta-
tistics (mean, standard error, median, quartiles) were presented 
for each treatment by cohort using the Kaplan-Meier method. 
Incidence rates of recrudescence and reinfection at day 29 were 
estimated using the Kaplan-Meier method based on the subset 
of full analysis set patients with clearance of initial infection be-
fore day 15. For PRR24 hours, descriptive statistics and 95% CI 
for the geometric mean were provided by cohort and treatment. 

Figure 1. Study design. Abbreviations: QD, daily; SD, single dose.
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If the asexual parasite count at hour 24 was 0, the half value 
of detection limit was used to calculate the ratio. The detec-
tion limit was assumed to be 20 parasites/µL. Pharmacokinetic 
analyses were based on the pharmacokinetic analysis set (all 
patients in the safety analysis set who had evaluable pharma-
cokinetic parameter data and took at least 80% of the assigned 
study medication). Noncompartmental analysis was used and 
descriptive statistics were provided. Two-sided 90% CIs were 
only calculated for AUC0-24h, Cmax, and Tmax.

RESULTS

Study Patients

The trial started on 16 November 2017 and was completed on 23 
November 2019. A total of 188 patients (11 in Mali, 16 in Gabon, 
29 in Ghana, 58 in Uganda, and 74 in Rwanda) were random-
ized in 5 cohorts (Supplementary Figure 1), 137 to cipargamin 
and 51 to artemether-lumefantrine. Two cipargamin patients 
were randomized but not treated and were excluded from the 
efficacy and pharmacokinetic analyses, and a further 2 patients 
were excluded from the pharmacokinetic analyses.

Patient demographics were comparable across treatment 
groups and consistent with the intended target population 
(Supplementary Table 3). Cohorts were balanced in terms of 
baseline characteristics, except for P.  falciparum count, which 
tended to be higher in cohorts 4 and 5 (median asexual forms/
µL in cipargamin groups between 8190 and 15  697) than co-
horts 1 to 3 (850 to 6430). Cohorts 1 and 2 used potentially 
subtherapeutic doses: in view of this, the range of parasitemia 
permitted for inclusion in the study was low (500 to 50  000 
parasites/µL).

Efficacy

All cipargamin doses 50 mg or higher were associated with very 
rapid parasite clearance, with a median PCT of 8 hours compared 
with 24 hours for artemether-lumefantrine, with an apparent 
dose response plateauing at the 50-mg single dose (Table 1).  
Figure 2 shows mean parasitemia by treatment over time, and 
the observed dose response is consistent with that for PCT. 
Parasite clearance profiles by dose for individual patients are 

presented in Figure 3 and show very rapid clearance of parasit-
emia at cipargamin doses of 50 mg or higher.

Parasite reduction ratios at 24 hours increased with 
cipargamin dose. Peak median PRR24 around 1000 was 
achieved with the 50-mg single dose, whereas median PRR24 
for the 25-mg single dose was approximately 600 and was below 
100 for the 10-mg single dose. Due to the rapid parasite clear-
ance with higher cipargamin doses, such that postbaseline para-
site levels were undetectable in many patients, and the exclusion 
of patients with more than 50 000 parasites/µL from the study, 
the observed PRR24 for those doses may not reflect the actual 
values possible.

The FCT could not be meaningfully assessed in cohorts 1 
to 3 due to the small numbers of patients with pyrexia, which 
was probably related to antipyretic treatment with parace-
tamol (acetaminophen). In cohorts 4 and 5, FCT was shorter 
with all cipargamin dose regimens (means ranging from 5.7 
to 9.9 hours) than the pooled artemether-lumefantrine group 
(13.2 hours).

The PCR-corrected ACPRs at 14 and 28  days of over 
75% and 65%, respectively (Figure 4), were achieved in all 
single- and multiple-dose arms. The PCR-uncorrected ACPR 
(Supplementary Table 4) in most cipargamin dose groups was 
lower than the PCR-corrected ACPR, especially at 28  days, 
reflecting reinfection rates. The recrudescence rate at 28 days 
was 24/135 (17.8%) for cipargamin; the Kaplan-Meier proba-
bility of recrudescence across cipargamin groups ranged from 
10% to 32.5%. There was no obvious relationship of ACPR, 
rates of reinfection, or recrudescence to cipargamin dose. 
Differences between cohorts in baseline parasite counts (me-
dians ranging from 850/µL in the cipargamin 10-mg single-
dose group to 15 697/µL in the 50-mg/day for 3 days group), 
and the sequential recruitment by cohort leading to addi-
tional seasonal and geographic variability, complicate com-
parisons between cohorts. As expected, patients receiving 
artemether-lumefantrine had lower rates of reinfection and 
recrudescence. Early treatment failure (according to the study 
definition) only occurred in 1 artemether-lumefantrine pa-
tient; LCF and LPF were more common in cipargamin-treated 
patients (Supplementary Table 2).

Table 1. Parasite Clearance Time (Hours) by Treatment Group

Cipargamin Dose/Regimen

 
10 mg SD 
(n = 10)

10 mg QD

25 mg SD 
(n = 12)

25 mg QD

50 mg SD 
(n = 21)

50 mg QD

75 mg SD 
(n = 21)

150 mg SD 
(n = 22)

Artemether-
lumefantrine 

(n = 51)
3 days  
(n = 10)

3 days  
(n = 20)

3 days  
(n = 19)

Median PCT 24.4 30.1 11.6 8.1 8.2 8.2 8.0 8.1 24.3

(2-sided 95% CI) (8.0, 48.0) (4.2, 36.7) (8.0, 24.0) (8.0, 12.2) (8.0, 12.2) (8.0, 12.0) (8.0, 8.1) (2.1, 9.2) (24.1, 36.0)

PCT was calculated from the date of first treatment and is based on uncorrected parasite counts. Patients without parasite clearance for whatever reason are censored at the time of last 
parasite assessment. In the case that a patient receives rescue medication before parasite clearance, the time to event is censored at the first use of rescue medication. 
Abbreviations: CI, confidence interval; PCT, parasite clearance time; QD, daily; SD, single dose.
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Resistance Marker Analysis

Baseline samples did not show any known mutations asso-
ciated with resistance in the Pfatp4 gene. One specific mu-
tation in the Pfatp4 gene, G358S, was detected in samples 
from 22 of 34 patients treated with cipargamin at the time of 
treatment failure (Table 2). A full list of identified mutations 
is available in Supplementary Table 6. The G358S mutant ap-
peared to be more common in recrudescences with higher 
doses of cipargamin, which may reflect greater selective pres-
sure and/or higher parasite counts in cohorts receiving such 
doses. All 34 patients with treatment failure after cipargamin 
monotherapy were successfully treated with standard of 
care (artemether-lumefantrine), including recrudescences 
with the mutant (G358S) parasites. The PCT in cipargamin-
treated patients infected with parasites with kelch13 muta-
tions at baseline did not differ significantly from patients 
with wild-type kelch13. Details on the observed prevalence 
of kelch13 mutations are reported separately [18].

Pharmacokinetics

Summary statistics for pharmacokinetic parameters are pre-
sented in Supplementary Table 5. After a single dose, median 
Tmax of cipargamin in plasma ranged from 4 to 8 hours; mean 
Cmax, AUClast, and AUC0-24h increased with dose over the tested 
range (10 to 150 mg) and were approximately dose-proportional. 

Pharmacokinetic parameters after multiple doses were con-
sistent with those after single doses. High variability in exposure 
(coefficient of variation: 25–53%) was observed across cohorts 
similarly to previous studies [2] and might be due to variability 
in ɑ1-acid glycoprotein levels in patients [1]. Mean elimination 
half-life ranged from 24.4 to 35.1 hours after a single dose and 
29.9 to 32.4 hours after 3 days of once-daily dosing; steady state 
was not attained after 3 days. The mean accumulation ratio was 
1.4 following once-daily doses for 3 days.

The exposure–response relationship for PRR24 was ex-
plored. PRR24 increased steeply with cipargamin exposure. 
Peak PRR24 appeared to be at an exposure of 15–20 μg.hr/mL  
and remained stable at higher exposures (Figure 5). For patients 
with exposures of approximately 10 μg.hr/mL or greater, there 
was no detectable parasitemia 24 hours postdose. This may 
have complicated the interpretation at higher exposures, where 
the curve may not reflect the true relationship between PRR24 
and exposure. Dose selection for future studies could target an 
exposure above 15 μg.hr/mL for achieving peak PRR24, as in 
patients with malaria in this study, exposures as high as approx-
imately 50 μg.hr/mL were observed without safety concerns.

DISCUSSION

In recent years, mortality from malaria has declined, mainly due 
to the deployment of vector control measures and antimalarials 

Figure 2. Mean parasite count over time (at scheduled visits only) by treatment group.
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based on artemisinin derivatives [14]. Artemisinin-based com-
bination therapies provide rapid clearance of parasitemia and 
high ACPR. The emergence of resistance in South-East Asia 
[19-21], and more recently in Rwanda [22], threatens the utility 
of artemisinins, might derail current malaria control efforts, 
and highlights the need to develop novel antimalarials.

Cipargamin is a novel spiroindolone antimalarial that has 
shown rapid parasite clearance in phase II studies [1, 2, 5]. 
The current trial was conducted to assess the hepatic safety 
of cipargamin, following the observation of transient, mainly 
asymptomatic, LFT elevations in previous studies. Here we 
describe the efficacy and pharmacokinetics of cipargamin 
from this study, across a wide range of doses (10-mg to 150-
mg single dose and 10-mg to 50-mg daily for 3  days). This 
was the first clinical trial to be performed with cipargamin in 
sub-Saharan Africa.

This study was not powered to assess efficacy, and the se-
quential cohorts and differences in baseline parasite counts 
complicate comparisons of efficacy between treatment arms. 
Patients were adults in sub-Saharan Africa (who are likely to 
have acquired partial immunity against malaria), so efficacy re-
sults may not be easily generalizable to other age groups or re-
gions [2, 5].

In previous studies, cipargamin treatment was notable for 
the rapid clearance of parasites [2, 5]. Results from this study 
support this observation and show a clear dose–response rela-
tionship, demonstrated by PCT, PRR, and the time course of 
parasitemia. Artemisinin is regarded as a fast-acting antimal-
arial, and it is notable that cipargamin at doses of 50 mg and 
above showed considerably shorter PCT than artemether-
lumefantrine (median values of ~8 hours and 24 hours, re-
spectively). This was reflected in the time course of parasitemia 
reduction.

The ACPR, reported here across a wide cipargamin dose 
range, including 5 single-dose arms, was similar across 
treatment groups at day 15, but at day 29, recrudescence, 
LCF, and LPF were more frequent with cipargamin than 
with artemether-lumefantrine. This might be expected as 
cipargamin was used as monotherapy and the elimination 
half-life is approximately 24 hours. Other antimalarials with 
similar or shorter half-lives have also shown high rates of re-
crudescence when used as monotherapies [23, 24]. In an early 
study in China, artemether monotherapy with 4 doses (twice 
daily for 2 days) showed an uncorrected ACPR of 46% [3]. 
Cipargamin will be developed as the fast-acting component 
in a combination regimen and efficacy of the combination 

Figure 3. Individual patient parasite counts over time by treatment group; 1 point per patient per visit.
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needs to be noninferior in all age groups compared with 
standard of care.

As with other PfATP4 inhibitors, mutations in the PfATP4 
gene that lead to decreased susceptibility have been selected in 
vitro under prolonged drug pressure of cipargamin, which in-
dicates the polymorphic nature of the gene [7, 10, 11, 25]. In 
cases of treatment failure with cipargamin, a specific PfATP4 
mutation (G358S) was common. The G358S mutant was first 

described from in vitro experiments and was generated under 
selection pressure for SJ733 [26], a dihydroisoquinolone anti-
malarial candidate compound that targets PfATP4 [27]. Since 
this and other known PfATP4 mutations were not detected in 
any of the baseline samples, this suggests that there is no pre-
existing cipargamin resistance. Treatment with cipargamin 
monotherapy appears to have selected resistant parasites that 
arise spontaneously and are likely to be present in small num-
bers in patients with high parasitemia and undetectable at base-
line [25]. This observation is consistent with preclinical data for 
cipargamin demonstrating a medium risk for resistance [7]. All 
patients with recrudescent parasites, including those with the 
G358S mutation, were successfully treated with artemether-
lumefantrine. This confirms previous in vitro and clinical data 
regarding lack of cross-resistance between artemisinins and 
cipargamin and distinct modes of action [2, 7]. Further in vitro 
characterization of the G358S mutant is needed to better under-
stand potential fitness costs and transmissibility. In future clin-
ical studies, monitoring of resistance markers will be advised, 
and selection for resistance should be prevented by combining 
cipargamin with a long-acting partner compound with a high 
barrier to resistance.

In conclusion, cipargamin, at single doses of 50 mg to 150 mg, 
was associated with very rapid parasite clearance and PCR-
corrected ACPR at day 29 of at least 65% in adult patients with 
uncomplicated P. falciparum malaria. This monotherapy study 

Table 2. Occurrence of Recrudescence With PfATP4 G358S Mutation, by 
Dose Regimen

Patients, n (%)

Dose regimen
Number of 

Patients
Late Treat-

ment Failures
Recrudescences With 

G358S Mutation

Cipargamin 10 mg SD 9 1 (11) 0 (–)

Cipargamin 25 mg SD 12 4 (33) 0 (–)

Cipargamin 50 mg SD 21 4 (19) 4 (19)

Cipargamin 75 mg SD 20 5 (25) 3 (15)

Cipargamin 150 mg SD 22 9 (41) 5 (23)

Cipargamin 10 mg QD 
3 days

10 1 (10) 1 (10)

Cipargamin 25 mg QD 
3 days

20 4 (20) 3 (15)

Cipargamin 50 mg QD 
3 days

19 6 (32) 6 (32)

Total 133 34 (26) 22 (17)

Abbreviations: QD, daily; PfATP4, Plasmodium falciparum ATPase 4; SD, single dose.

Figure 4. PCR-corrected ACPR by treatment group. Abbreviations: ACPR, adequate clinical and parasitological response; CI, confidence interval; PCR, polymerase chain 
reaction; QD, daily.
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confirms the need for fixed-dose combination therapy to avoid 
recrudescence and selection for resistant parasites. Cipargamin, 
with its high potency, rapid parasite clearance, and potential for 
single-dose cure will be further developed for uncomplicated 
malaria with a suitable combination partner.

Supplementary Data
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materials are not copyedited and are the sole responsibility of the authors, so 
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